Attention is all you need?

刘天禹 August 1st 2019

Timelines

- 2014 Recurrent Models of Visual Attention
- 2017 Attention is All You Need
- 2018 Image Transformer
- 2018 Non-local Neural Networks
- 2019 Self-Attention GAN
- 2019 Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

Recurrent Models of Visual Attention

Attention for Visual with Reinforcement Learning Google DeepMind, Volodymyr Mnih & Alex Graves NIPS 2014

https://blog.csdn.net/yexiaogu1104/article/details/89455718

Attention is All You Need

"Attention is all you need"

Google Brain

December 2017

Sequence Learning

- Sequence Learning
 - (Variable Length Sequence of Words of Pixels)
 - RNNs
 - LSTM&GRU
- Recurrent Convolution Structure

Stanford CS224N-L14 Winter 2019 <u>https://www.youtube.com/watch?v=5vcj8kSwBCY&t=1619s</u>

But...

- No Parallelization
- No Forward Thinking
- No explicit model of Long-term dependency
- Computationally Wasteful

How about Convolution ?

- Trivial to parallelize
- Local dependencies

• Long-distance require many layers

Attention !

- Crucial in Neural machine translation
- How about representation ?

Self Attention

- Constant "Path length"
- Trivial to Parallelize
- Multiplicative Interaction

The Transformer

The Transformer

Attention Head

Scaled Dot-Product Attention

For Convolution

For Attention

Multi-head Attention

FLOPs

Self-Attention	O(length ² · dim)
RNN (LSTM)	O(length \cdot dim ²)
Convolution	$O(length \cdot dim^2 \cdot kernel_width)$

Image Transformer

Generate Image with Self-attention (Transformer)

Google Brain

June 2018

$$q_a = \text{layernorm}(q + \text{dropout}($$
$$\text{softmax}\left(\frac{W_q q (MW_k)^T}{\sqrt{d}}\right) MW_v)) \quad (1)$$

 $q' = \operatorname{layernorm}(q_a + \operatorname{dropout}(W_1 \operatorname{ReLu}(W_2 q_a)))$ (2)

Local 1D Attention

Local 2D Attention

Non-local Neural Networks

Non-local Means X Self-Attention

Kaiming He CVPR 2018

Non-local Means

$$y_i = \frac{1}{C(x)} \sum_j f(x_i, x_j) g(x_j)$$

- Gaussian
- Embedded Gaussian
- Dot Product
- Concatenation

 $f(x_i, x_j) = \exp(x_i^T \cdot x_j)$ $f(x_i, x_j) = \exp(\theta(x_i^T) \cdot \phi(x_j))$ $f(x_i, x_j) = \theta(x_i^T) \cdot \phi(x_j)$ $f(x_i, x_j) = ReLU(w_f^T[\theta(x_i) \cdot \phi(x_j)])$

Self-Attention GAN

"FINALLY, we have dogs with four legs"

Ian Goodfellow

May 2018

goldfish (44.4, 58.1)

indigo bunting (53.0, 66.8)

redshank (48.9, 60.1)

saint bernard (35.7, 55.3)

tiger cat (88.1, 90.2)

Model	Inception Score	Intra FID	FID
AC-GAN (Odena et al., 2017)	28.5	260.0	/
SNGAN-projection (Miyato & Koyama, 2018)	36.8	92.4	27.62*
SAGAN	52.52	83.7	18.65

Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

Attention of the future

CVPR 2019 (oral accepted)