

Dual Super-Resolution Learning for Semantic Segmentation

Li Wang^{*,1}, Dong Li¹, Yousong Zhu², Lu Tian¹, Yi Shan¹

Emails: {liwa, dongl, lutian, yishan}@xilinx.com, yousong.zhu@nlpr.ia.ac.cn

¹ Xilinx Inc., Beijing, China.

² Institute of Automation, Chinese Academy of Sciences, Beijing, China.

D Motivation

- Large computation budgets for SOTA methods
- Performance degradation for light-weight methods
- High-resolution input (e.g., 1024x2048)

Method	GFLOPs	Cityscapes mIoU (val)
PSPNet (ResNet101) [1]	1149.92	79.70%
DeepLabv3+ (Xception-65) [2]	837.28	78.79%
DeepLabv3+ (MoileNetv2) [2]	42.54	70.71%
ESPNetv2 [3]	5.4	64.50%

Accuracy vs. GFLOPs of current state-of-the-art methods on Cityscapes

Accuracy vs. Input size for different networks on Cityscapes

[1] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In CVPR, 2017

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In ECCV, 2018 [3] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and Hannaneh Hajishirzi. Espnetv2: A light-weight, power efficient, and general purpose convolutional neural network. In CVPR, 2019

D Review of Existing Methods

□ SOTA methods: (*e.g.*, PSPNet, DeepLabv3+...)

Light-weight methods: (*e.g.*, ESPNet,...)

[1] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In CVPR, 2017

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In ECCV, 2018 [3] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and Hannaneh Hajishirzi. Espnetv2: A light-weight, power efficient, and general purpose convolutional neural network. In CVPR, 2019

Semantic Segmentation Super-Resolution (SSSR).

Single Image Super-Resolution (SISR).

Single Image Super-Resolution (SISR).

Feature-level visualization for SSSR and SISR under the same input (0.5x). (a) Input image, (b) SSSR feature visualization, (c) SISR feature visualization.

Feature Affinity (FA).

Feature Affinity (FA)

$$L_{fa} = \frac{1}{W'^2 H'^2} \sum_{i=1}^{W'H'} \sum_{j=1}^{W'H'} ||S_{ij}^{seg} - S_{ij}^{sr}||_q$$

Where:

$$S_{ij} = (\frac{F_i}{||F_i||_p})^T \cdot (\frac{F_j}{||F_j||_p})$$
$$p = 2, \ q = 1$$

Loss function

$$L = L_{ce} + w_1 L_{mse} + w_2 L_{fa}$$

Where:

$$\begin{split} L_{ce} &= \frac{1}{N}\sum_{i=1}^{N} -y_i log(p_i) \quad L_{mse} = \frac{1}{N}\sum_{i=1}^{N} ||SISR(X_i) - Y_i||^2 \\ w_1 &= 0.1, \, w_2 = 0.1 \end{split}$$

- Ablation Study on Cityscapes
 - Effect of algorithmic components

Method	Input	Output	Val. mIoU	Method	Input	Output	Val. mIoU
ESPNetv2 [1]	256x512	256x512	54.5%	DeepLabv3+ [2]	256x512	256x512	56.5%
+ SSSR	256x512	512x1024	55.7%	+ SSSR	256x512	512x1024	57.1%
+ SSSR $+$ SISR	256x512	512x1024	56.9%	+ SSSR $+$ SISR	256x512	512x1024	57.4%
+ SSSR + SISR + FA	256x512	512x1024	59.5%	+ SSSR + SISR + FA	256x512	512x1024	59.2%

Effect of various input resolutions

Method	256x512	320x640	384x768	448x896	512x1024
ESPNetv2 [1]	54.5%	57.1%	61.4%	63.2%	64.5%
ESPNetv2 (ours)	59.5%	61.9%	64.0%	65.7%	66.9%
DeepLabv3+ [2]	56.5%	59.3%	62.0%	63.7%	70.0%
DeepLabv3+ (ours)	59.2%	61.7%	64.3%	65.7%	72.0%

[1] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and Hannaneh Hajishirzi. Espnetv2: A light-weight, power efficient, and general purpose convolutional neural network. In CVPR, 2019.
 [2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In ECCV, 2018

Ablation Study on Cityscapes

■ Effect of various networks

				the second se
Method	Val. (%)	Test (%)	GFLOPs	
ESPNetv2	64.5	65.1	5.40	
ESPNetv2 w/ DSRL	66.9	65.9	5.40	
DABNet	62.6	65.0	20.44	
DABNet w/ DSRL	65.4	66.2	20.44	
BiseNet	62.6	61.8	49.20	
BiseNet w/ DSRL	66.8	64.9	49.20	
DeepLabv3+	70.0	67.1	974.30	
DeepLabv3+ w/ DSRL	72.0	69.3	974.30	
PSPNet	71.5	69.1	287.48	
PSPNet w/ DSRL	74.4	73.4	287.48	ſ

Consistent improvement without extra computation cost

Comparisons with state-of-the-art results

Method	Test (%)	GFLOPs
ENet	58.3	7.24
ESPNet	60.3	8.86
ERFNet	68.0	25.60
PSPNet(ResNet18(0.5))	54.1	133.40
PSPNet(ResNet18(0.5)) w/ Distillation	60.5	133.40
PSPNet(ResNet18(1.0))	67.6	512.80
PSPNet(ResNet18(1.0)) w/ Distillation	71.4	512.80
FCN	65.3	1335.60
RefineNet	73.6	2102.80
ESPNet (ours)	65.1	5.40
DeepLabv3+ (ours)	69.3	974.30
PSPNet (ours)	73.4	287.48

Results on Cityscapes

Comparisons of the DeepLabv3+ baseline and our DSRL method in terms of per-class IoU scores on Cityscapes

Remarkable improvement on small classes

Results on Cityscapes

Visualization of segmentation features, (a) input image, (b) the ESPNetv2 baseline method, (c) our DSRL method.

Capture more fine-grained structure information of objects

Comparisons of segmentation results. (a) Input image. (b) Ground truth. (c) The DeepLabv3+ baseline method. (d) Our DSRL method.

Better segmentation results on various classes

Results on CamVid

Method	Test (%)	GFLOPs
ESPNetv2	50.9	1.82
ESPNetv2 w/ DSRL	54.4	1.82
BiSeNet	53.4	4.14
BiSeNet w/ DSRL	57.0	4.14
DeepLabv3+	60.4	326.13
DeepLabv3+ w/ DSRL	63.7	326.13

Comparisons of the DeepLabv3+ baseline and our DSRL method in terms of per-class IoU scores on CamVid.

Examples of segmentation results on CamVid. (a) Input image. (b) Ground Truth. (c) The DeepLabv3+ baseline method. (d) Our DSRL method.

D Experiments on Human Pose Estimation

- Architecture: HRNet-w32 [1]
- ➤ Dataset: MS COCO2017 [2]

Consistent improvement on different resolutions

Method	Input	mAP	AP@0.5	AP@0.75	AR	AR@0.5	AR@0.75	FLOPs
HRNet-w32	256x192	74.4%	90.5%	81.9%	79.8%	94.2%	86.5%	7.12G
HRNet-w32(ours)	256x192	75.6%	92.2%	83.0%	81.2%	93.8%	88.5%	7.12G
HRNet-w32	160x128	69.2%	89.3%	78.1%	75.7%	93.6%	83.7%	2.97G
HRNet-w32(ours)	160x128	71.5%	89.6%	79.4%	77.5%	93.7%	84.5%	2.97G
HRNet-w32	128x96	64.6%	87.8%	73.9%	71.7%	92.8%	80.2%	1.78G
HRNet-w32(ours)	128x96	67.9%	88.3%	76.7%	74.5%	92.8%	82.4%	1.78G

[1] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for human pose estimation. 2019.
[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll'ar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Conclusion

- Dual Super-Resolution Learning (DSRL)
 - Semantic Segmentation Super-Resolution (SSSR)
 - > Learn high-resolution representations for prediction
 - Single Image Super-Resolution (SISR)
 - > Capture fine-grained structural representations without extra annotations
 - Feature Affinity (FA)
 - > Learn similarity between SSSR and SISR features for better knowledge transfer
- Effectiveness and versatility
 - Improve the performance while keeping the same computation cost
 - Reduce the computation cost while keeping the similar performance
 - Generalized to other dense prediction tasks (e.g., human pose estimation)

Thanks!

Project Page: https://github.com/wanglixilinx/DSRL